×

预约试听

18171407982

拨打热线咨询课程

不再弹出

咨询热线:18171407982

客服在线时间:8:00-21:00

2023海南师范大学618数学分析硕士考试大纲

武汉新文道考研 发布时间:2022-12-19 最后更新时间:2024-03-05 15:46:47 郑晓蒙

资料领取/课程咨询

2023研究生考试即将开始,2023考研备考正在进行。为帮助大家,小编准备了2023海南师范大学618数学分析硕士考试大纲的内容。更多考研信息的内容,请大家关注企鹅优课网。⭐ 2023考研备考资料领取

一、考试形式与试卷结构

(一)试卷成绩及考试时间

本试卷满分为150分,考试时间为180分钟。

(二)答题方式

答题方式为闭卷、笔试。

(三)试卷结构

计算题、解答题、证明题等

二、考试目标:

1.掌握数学分析的基本概念和基础知识。

2.理解数学分析的基本理论和基本方法。

3.运用数学分析的基本理论和方法来分析、解决相关的实际问题。

三、考试范围:

(一)实数集与函数

实数的性质、确界原理,函数概念,函数的奇偶性、周期性、有界性、无界性,复合函数和反函数,初等函数。

(二)极限与函数的连续性

数列和函数极限的概念,极限的四则运算及其性质,单调有界原理,Heine定理,二个重要极限,函数的连续性,间断点,初等函数的连续性及其性质,闭区间上连续函数的性质,无穷小量与无穷大量的比较。

(三)导数与微分

导数定义,导数的几何意义,导数的四则运算、反函数的求导法则和复合函数求导的链式法则;隐函数与参数方程确定的函数的求导法则;高阶导数;微分概念与微分的几何解释;微分法则,一阶微分的形式不变性。

(四)微分中值定理及其应用

极值概念;Fermat定理和微分中值定理(Rolle定理,Lagrange中值定理,Cauchy中值定理);泰勒公式,L'Hospital法则;利用导数研究函数的各种性质(单调性与极值,函数的凸性);函数极值的判别法;利用导数求函数的渐近线并且绘制函数的图像。

(五)实数的完备性

区间套定理;聚点定理;有限覆盖定理。

(六)不定积分

原函数和不定积分的概念;不定积分的基本公式;换元积分法,分部积分法;有理函数的积分;三角函数有理式的积分;某些无理函数的积分。

(七)定积分

定积分概念及其几何意义;定积分的基本性质;函数的一致连续性,康托定理;Newton-Leibniz公式;定积分换元积分法和分部积分法。

(八)定积分的应用

微元法;定积分在几何上的应用(平面图形的面积,已知截面积的立体体积,旋转体的体积,平面上的光滑曲线的弧长,曲线曲率);定积分在物理上的应用(总压力问题,变力作功问题)。

(九)广义积分

无穷积分和瑕积分的概念及其敛散性(包括绝对收敛和条件收敛),无穷积分和瑕积分的性质,Cauchy收敛准则,比较判别法,积分第二中值定理,Abel阿贝尔判别法和Dirichlet判别法。

(十)数项级数

数项级数的收敛和发散,级数收敛的必要条件,收敛级数的基本性质,正项级数收敛的判别法(比较判别法、比值判别法、根式判别法、拉阿比判别法、积分判别法);交错级数和Leibniz判别法,绝对收敛与条件收敛,柯西收敛原理,Abel变换以及关于一般数项级数的Abel阿贝尔判别法和Dirichlet判别法,级数的重排问题及乘积问题。

(十一)函数项级数

函数列一致收敛性概念及其几何意义,函数列一致收敛性的判别法,一致收敛函数列的极限函数的分析性质(连续性、可积性、可微性);函数项级数一致收敛性概念,一致收敛的Cauchy收敛准则,函数项级数一致收敛的必要条件,函数项级数一致收敛性的判别法(M判别法、Abel判别法、Dirichlet判别法),一致收敛的函数项级数的和函数的分析性质(连续性、可积性、可微性)。

(十二)幂级数

幂级数的收敛域和收敛半径,Abel第一定理和第二定理,幂级数和函数的性质(连续性、可积性、可微性),函数的幂级数展开。

(十三)傅里叶级数

三角函数系,三角级数的概念,以2p为周期的函数的Fourier级数,Fourier级数的收敛定理,函数的Fourier级数展开法。

(十四)多元函数的极限与连续

平面点集的有关概念(区域、距离、聚点、开集和闭集等),二维空间的基本定理(矩形套定理、致密性定理、Cauchy收敛原理、有限覆盖定理),多元函数的极限和连续性,多元函数的累次极限,有界闭区域上的连续函数的性质(有界性、最值性、介值性、一致连续性)。

(十五)偏导数与全微分

偏导数的概念,全微分的概念,偏导数与微分的关系;多元复合函数的微分法,多元函数一阶微分形式的不变性,高阶偏导数;方向导数的概念及求法,多元函数的Taylor公式。

(十六)隐函数存在定理

单个方程的隐函数存在定理,方程组的隐函数组存在定理,反函数组存在定理。

(十七)极值和条件极值

多元函数极值(条件极值与无条件极值)概念,稳定点概念,多元函数无条件极值的必要条件和充分条件,求多元函数无条件极值的Lagrange乘数法。

(十八)含参变量的积分

含参变量的正常积分概念,含参变量的正常积分的分析性质(连续性定理、积分次序交换定理与积分号下求导定理),含参变量的正常积分的计算;含参变量的广义积分的一致收敛概念,含参变量的广义积分的一致收敛的判别法(Cauchy收敛原理、Weierstrass判别法、Abel判别法、Dirichlet判别法及Dini定理);一致收敛积分的分析性质(连续性定理、积分次序交换定理与积分号下求导定理);Euler积分:Beta函数和Gamma函数的定义、性质、递推公式及二者之间的关系。

(十九)重积分

重积分的概念及其基本性质,化重积分为累次积分的计算方法;重积分的变量代换,极坐标变换,柱坐标变换,球坐标变换;曲面面积的计算,重积分在物理中的应用(质心,转动惯量等)。

(二十)曲线积分与曲面积分

第一型曲线积分的概念,第一型曲线积分的性质(线性性与路径可加性),第一型曲线积分的计算公式及其应用;第一型曲面积分的概念、计算及应用。第二型曲线积分的概念及性质(方向性、线性性与路径可加性),第二型曲线积分的计算公式及其应用;理解曲面的侧的相关概念,第二型曲面积分的概念及性质(方向性、线性性与曲面可加性),第二型曲面积分的计算及应用。

(二十一)各种积分间的联系

Green公式,用Green公式计算曲线积分及求区域的面积,曲线积分与路径无关的条件及其应用;Gauss公式及其应用,Stokes公式及其应用。

四、主要参考书目

1.《数学分析》(上、下),华东师大数学系编,高等教育出版社2010。

原文出处:海南师范大学官网

以上就是【2023海南师范大学618数学分析硕士考试大纲】的全部解答,如果你想要学习【考研专业】更多这方面的知识,欢迎大家前往企鹅优课

> >